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Abstract

We consider Taylor-Aris dispersion in columns of nearly rectangular cross section
of large aspect ratio. We generalize the results of [1] and [2] who showed that the
e�ective di�usion rate for perfectly rectangular cross sections is remarkably di�er-
ent than the di�usion rate between two parallel plates { as th e aspect ratio goes to
in�nity, the e�ective di�usion rate does not approach the e� ective di�usion rate for
two parallel plates. In particular, we examine columns of nearly rectangular cross
section having both non-parallel walls and asymmetric endsof arbitrary shape. In
particular, this includes geometries common to microfabricated gas chromatography
columns. We develop an expression for the e�ective di�usivity showing the contri-
butions from the walls and the ends, and the relative importance of each. We also
discuss the large e�ect that a small nonuniformity in the middle of the cross section
can have on the e�ective di�usion rate, and how the ends of thecross section can
be modi�ed to control the e�ective di�usion rate.

Key words: Taylor-Aris dispersion, gas chromatography, high aspect ratio, end
e�ects

1 Introduction

In the classical papers by G. I. Taylor [3] and Rutherford Aris [4], they considered the
advection and di�usion of a solute down a straight tube whosediameter is much smaller
than its length. They showed that the solute is advected downthe tube with the average
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velocity of the uid in the tube, and that its concentration pro�le satis�es a one dimensional
advection di�usion equation with an e�ective di�usion constant that has the form

Def f = D
�
1 + K Pe2

�
: (1)

Here D is the di�usivity of the solute, K is a constant that depends only on the geometry
of the cross section of the tube, andPe is the P�eclet number

Pe =
Ru
D

:

HereR is the radius of the tube, andu is the average velocity of the uid in the tube. One of
the most striking features of this formula is that for large values ofPe, the e�ective di�usion
coe�cient is inversely proportional to the physical di�usi vity. In [5], a similar analysis is used
to lay the foundations for capillary gas chromatography.

In [2], Doshi, Daiyai, and Gill considered Taylor-Aris dispersion in rectangular cross sections
of large aspect ratio and came up with a surprising result, which we now summarize. Suppose
the rectangular cross section has heightH0, width W, and de�ne the inverse aspect ratio as

� =
H0

W
:

Consider two dimensional Taylor-Aris dispersion between two parallel plates. Intuitively, we
might expect that the e�ective di�usion coe�cient for a rect angular channel approaches the
e�ective di�usion coe�cient for the case of two parallel plates as the inverse aspect ratio
approaches zero. These authors showed that this is not the case. In particular, the constant
K in (1) is about 8 times bigger for a rectangular cross sectionof arbitrarily high aspect
ratio as it is for two parallel plates. This phenomenon was discovered independently in [6]
and applied to the case of dispersion by turbulent ow in [1].

In [7], Guelle, Cox, and Brenner discovered a related phenomenon. For a smoothly varying
cross section that has a high aspect ratio (such as an elongated ellipse), the constantK in
(1) is proportional to 1=�2. This is equivalent to saying that the appropriate P�eclet number
to use in (1) is the P�eclet number based on the width of the cross section, not on the height.
For example, if we take a rectangular cross section of large aspect ratio, and we inscribe
an elongated ellipse in it, the constantK for the inscribed ellipse will be on the order of
1=�2 times larger than the constant for the rectangle. This phenomenon is also discussed in
[8] and [9]. A similar phenomenon was noted by Golay [6], who pointed out that in a large
aspect ratio channel, even a mild deviation from a rectangular geometry could drastically
e�ect the constant K .

With the exception of the papers by Dutta and Leighton [10{12], the papers concerning
Taylor-Aris dispersion in large aspect ratio channels can be grouped into two categories.
The �rst deal with cross sections where the middle part of thecross section is not close to
rectangular [9,7]. In this case the constantK is proportional to 1=�2, and any end e�ects will
give only a small correction to this value. The other class ofpapers deal with the speci�c
case of a rectangular cross section. The papers in this class[13{16] all are concerned with
the e�ects of the ends. They discuss the end e�ect by doing asymptotics on the analytical
expression (an in�nite series expansion) for the constantK in a rectangular channel.

The purpose of this paper is to present an analysis of Taylor-Aris dispersion in nearly rectan-
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gular cross sections of high aspect ratio. By nearly rectangular, we mean that the geometry
of the walls of the middle of the cross section deviate only slightly from the rectangular case,
but near the ends we may deviate signi�cantly from a rectangular cross section. We do not
assume the ends are symmetric. This particular geometry is important for microfabricated
gas chromatographs, and hence we believe it deserves special attention. We will present the-
ory combining the e�ects upon the dispersion of the geometryof the middle of the cross
section with the e�ects of the ends of the cross section, and show the relative importance of
each.

Our paper o�ers contributions that complement and extend the results in [10{12]. In [12],
the authors consider situations similar to those discussedin this paper, but develop their
analysis using heuristic arguments based on an analogy between the layer of slowly moving
uid at the ends of the channel and the thin layer of stagnant uid in gas chromatography
(see equations 14 and 15 in [12]). Although they showed considerable insight in writing down
these equations, essentially without derivation, we instead develop our analysis in a more
rigorous fashion without recourse to heuristic arguments.However, we also show in Appendix
B that our results agree with theirs for the case of nearly rectangular cross sections, thus
providing support for their conclusions. Additionally, our analysis drops their restriction that
the end e�ects at both ends be the same.

In [10], Dutta and Leighton discuss nearly rectangular cross sections and present numerical
results to demonstrate the e�ect of modifying the geometry at the ends of a rectangular
cross section. In particular, they show that by suitably modifying the ends of a rectangular
cross section it is possible to reduce the dispersion to the value for a parallel plate. In their
example they have the ends of the tube bulge out as in �gure 2(a). For a symmetrical cross
section, in order to achieve the nearly parallel plate result it is necessary to have the average
velocity in the channel be the same as the average velocity for the parallel plate case. One
would suspect that this requires that the ends bulge out. Though this result seems intuitive,
we feel that it merits a proof, which we show inx5.

We now discuss the source of the large e�ect that the end regions and small distortions of the
middle region can have on the dispersion coe�cient. Away from the ends of the cross section,
the ow exponentially approaches plane Poiseuille ow. That is, we haveu(x; y) ! upp(y)
for x away from the ends, whereupp(y) is the velocity pro�le for Poiseuille ow between two
parallel plates. When we compute the average velocityu of the ow in the channel we �nd
(see (22) inx4) that

u = U
pp

� � U
pp

(� L + � R ) + O(� 2):

Here U
pp

is the average velocity for Poiseuille ow between two parallel plates, and� L and
� R are constants that depend on the geometry of the left (L), and right (R) end regions,
but not on � .

Assuming the mid section of our cross section has parallel side walls, we will see that (see
(35))

K = K pp +
� 2

L � � L � R + � 2
R

3
+ O(� ):

Here K pp = 1
210 is the e�ective di�usion coe�cient for Taylor-Aris dispers ion between two

in�nite parallel plates. Note that the e�ect of the end regions does not vanish even in the
limit as � ! 0. Since the quadratic form� 2

L � � L � R + � 2
R is positive de�nite, the only way

we can make the end correction vanish is if both� L and � R are identically zero.
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In x5 we show that the only way we can make� L (or � R ) vanish is if the end bulges out so
that the height in the end regions exceeds the height in the middle region (as in �gure 2(a)),
and also in [10]. In the case of a symmetrical cross section where � L = � R , this requires
that the ends be modi�ed such that the average velocity in thechannel is the same as the
average velocity between two parallel plates. One might be tempted to think that in the
non-symmetrical case, the dispersion could also be reducedto the parallel plate value by
having the average velocity in the cross section be the same as the average velocity for the
parallel plate case (for example, by having only one of the ends bulge out, as in �gure 2(b),
while keeping the other end as in a rectangular cross section), but we show that we can
reduce the dispersion to its parallel plate value only if both � L and � R vanish, and hence
only if both ends bulge out.

In this paper we also analyze the case where the walls of the middle of the cross section
have a small deviation from the parallel plate geometry. Although they do not consider this
case speci�cally, the results in [7] and [9] suggest that mild deviations from the parallel plate
geometry could signi�cantly change the constantK . This is consistent with the comments
made by Golay [6], although his discussion of this point was limited to the case where the
walls have a constant slope, and his remarks were both exceedingly brief and confusing.

We consider the case where the height of the cross section varies as a function ofx as

H (x) = H0 (1 + � (x=W)) :

In x7 we show that assuming� and � are both small, we have

K � K pp +
� 2

L � � L � R + � 2
R

3
+ K 1(� L ; � R )

�
�

+ K 2
� 2

� 2
;

HereK 2 is independent of� ,� , � L , and � R . The constantK 1(� L ; � R) is independent of� and
� , and is linear in � L and � R . This equation shows both the e�ects of the ends of the cross
section, and the e�ects from variations in the middle of the cross section, and the relative
e�ect caused by each. We see that even if� and � are both small we can in fact get a very
large change in the e�ective di�usion constant due to a smallvariation in the cross section.

This work was largely motivated by problems in gas chromatography where microfabrication
techniques have made it convenient to manufacture gas chromatography channels of nearly
rectangular cross section. In this situation, we would liketo keep K as small as possible.
In particular, we show an end correction inx 8.2 that essentially recoversK = K pp for a
column of rectangular cross section. The results given in this paper should be of immediate
interest to the gas chromatography community.

We now summarize the contents of this paper. Inx2 we will discuss how to compute the
e�ective di�usion coe�cient for an arbitrary shaped cross section. Although this result is
not entirely new, we believe that our formulation is simple enough that it deserves being
written down, and is necessary for understanding the results for nearly rectangular cross
sections. The derivation we give of how to computeK is similar to that given in [17] where
the authors Fourier transform in the axial direction, but our results are applicable to any
cross sectional shape, and our derivation is more succinct since we are only concerned with
the long time behavior of the solution (e.g., the value ofK ).

In x3 we compute the e�ective di�usion coe�cient K pp for ow between parallel plates.
In x4 we discuss how to compute the average velocity in a channel of nearly rectangular
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cross section, which we will need for later sections. We see that the average velocity in a
wide channel di�ers from the average velocity in an in�nitely wide channel by an amount
that is proportional to � = H0=W. In x5 we prove that in order to have� L vanish, it is
necessary to have the ends bulge out. Inx6 we give the results for mid-sections of constant
height (� = 0), and in x7 we give the results for slowly varying mid-sections (� 6= 0). In x8,
we con�rm our results through direct numerical experiment.In Appendix A we give some
details of the calculations that were omitted in the main part of the paper, and in Appendix
B we compare our results to those in [12].

2 Taylor-Aris Dispersion for Arbitrarily Shaped Cross Sect ions

We consider the advection and di�usion of a solute down a column of constant but arbitrary
cross section. We denote the cross section of the column by 
,the boundary of the cross
section by@
, the area of the cross section asA, and the axial coordinate byz. The velocity
down such a column is unidirectional and independent ofz. In particular the velocity is given
by u = (0 ; 0; u(x; y)) where

� r 2
2u =

@p
@z

in 
 (2a)

and
u = 0 on @
 : (2b)

Here r 2
2 represents the two dimensional Laplacian (ignoring thez component), � is the

dynamic viscosity of the uid, and p is the pressure in the uid.

Suppose a species with concentrationC(x; y; z; t) is being advected and di�used down the
column. The evolution of the concentration distribution isgiven by [3]:

@C
@t

+ u(x; y)
@C
@z

= Dr 2C; (3a)

@C
@n

= 0 on @
 : (3b)

The theory of Taylor-Aris dispersion shows that, assuming the length of the column is much
greater than the characteristic length of the cross section, the evolution of the concentration
pro�le is very well approximated by the one dimensional advection di�usion equation

@C
@t

+ u
@C
@z

= Def f
@2C
@z2

: (4)

Here u is the average value of the velocity, andDef f is an e�ective di�usion constant that
has the form given in (1). There have been numerous derivations of this result [4,14,18]. We
give an alternative derivation that is an extension and simpli�cation of the arguments used
in [17].

Our derivation is based on the fact that the equations (3) arelinear and invariant under
arbitrary shifts in both t and z. The invariance under shifts inz make the equations amenable
to an analysis by Fourier transforms. In particular, ifĈ(x; y; k; t ) is the Fourier transform in
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z of C(x; y; z; t), then for each value ofk, Ĉ satis�es the evolution equation

@̂C
@t

+ i ku(x; y)Ĉ = D
�
r 2

2Ĉ � k2Ĉ
�

(5a)

along with
@̂C
@n

= 0 on @
 : (5b)

Due to the time shift invariance of these (and our original) equations, we can solve (5) by
expandingĈ in terms of functions of the form exp

�
� (m) t

�
� (m) (x; y; k), where � (m) satis�es

the eigenvalue problem

� (m) � (m) + i ku(x; y)� (m) = D
�
r 2

2�
(m) � k2� (m)

�
; (6a)

@�(m)

@n
= 0 on @
 : (6b)

If � (m)(k) is the mth eigenvalue as a function of the wavenumberk, then for the m = 0
mode, this eigenvalue problem has the eigenvalue� (0) (0) = 0, along with the eigenfunction
� (0) (0) = 1. All of the other eigenvalues will be on the order of

� (m) (0) = O(
D
R2

); m > 0;

whereR is a characteristic length of the cross section. This shows that as long astD=R2 > 1,
all of the modes with m > 0 will be rapidly damped out. Note that the time it takes for
the concentration peak to move a distancel down the column ist = 1=u. This means that
the modes with m > 0 will be signi�cantly damped out if Pe R=l � 1. Thus, as long as
the P�eclet number is not too large, and the length of the column is much greater than its
characteristic diameter, we are justi�ed in ignoring all but the mode m = 0. Physically this
means that the pro�le will become nearly uniform across a cross section.

When k 6= 0, we get similar behavior. However, in this case them = 0 mode will also be
signi�cantly damped if tDk 2 � 1. If as in the last paragraph we sett = l=u, we see that
any mode such thatR2k2 � Pe R=l will be signi�cantly damped out. The main conclusion
from all of this is that when analyzing the concentration pro�le down a long but very thin
column, we need only concern ourselves with the smallk limit of the mode m = 0. For ease
of notation, we will refer to the eigenvalue of interest merely as � (k) (dropping the zero
superscript). We will now use subscripts to denote the expansion of this eigenvalue in terms
of a Taylor series ink. In particular if we write the expansion

� (k) = i � 1k + � 2k2 + : : : ; (7)

we can see that the one dimensional di�usion equation

@C
@t

� � 1
@C
@z

= � � 2
@2C
@z2

satis�es the same dispersion relation as (4). That is, we have

u = � � 1 and Def f = � � 2:
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A rigorous asymptotic analysis shows that as a solute is advected and di�used down a long
narrow column, the concentration becomes nearly constant across a cross section, and the
value of this concentration is governed by the above one dimensional advection di�usion
equation. It should be noted that the above equation governsthe long time behavior of
the concentration pro�le. It does not, for example, resolvethe fast initial transient that
occurs if you place a species in the column with a nonuniform concentration distribution
across the cross section of the column. Including higher order terms in (7) will lead to a
one dimensional partial di�erential equation that has higher order spatial derivatives, and
that is more accurate for shorter time scales. For a more complete discussion of the transient
behavior in Poiseuille ow, see [17] and [19].

The above arguments show that the behavior of our solution can be well understood by
determining the parameters� 1 and � 2. In this paper when we compute the Taylor-Aris
dispersion coe�cient numerically, we compute the eigenvalue � (k) for a few values ofk
that are small, and then do a polynomial curve �t of this function to determine � 1 and
� 2. Alternatively, one can use the perturbation theory of eigenvalues to determine these
quantities.

We omit the details, but the perturbation theory of eigenvalues shows that

� 1 = � u

and

� 2 = � D �
D
A

Z



j r � 1 j2 dA; (8)

whereu is the average value of the velocity, and� 1 is the solution to

Dr 2
2� 1 = ( u(x; y) � u) ; (9a)

@�1
@n

= 0 on @
 : (9b)

This solution is uniquely determined up to a constant, whichdoes not inuence the value of
� 2.

This is the expression for� 2 that will be used in our analysis of rectangular and nearly
rectangular cross sections. From (9) it should be clear that� 1 is proportional to u

D . The
form of the above expression for� 2 shows that when we put our equations in dimensionless
form, the e�ective di�usion coe�cient has the form described in (1).

3 Taylor-Aris Dispersion Between Two Parallel Plates

If our cross section is a rectangle with a very large aspect ratio, we might expect that the
e�ective di�usion constant would be nearly equal to that calculated for the case of dispersion
between two in�nitely large at plates. In the next few sections we will see that this is in
fact not the case. As a preliminary to those sections we will calculate the e�ective di�usion
for the case of in�nite parallel plates.

We assume that the plates are a distanceH0 apart and that the average velocity between
the plates isU

pp
. The well known solution for ow between parallel plates shows that the
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velocity pro�le is given by
upp(y) = U

pp
f pp(y=H0);

where
f pp(� ) = 6

�
1=4 � � 2

�
: (10)

In this case we get
� pp

1 = � U
pp

:

The �rst order term � pp
1 in the eigenfunction satis�es

D
d2� pp

1

dy2
= upp(y) � U

pp
;

d� pp
1

dy
= 0 at y = � H0=2:

This has the solution
� pp

1 (y) = Pe H0Gpp(y=H0);

where

Gpp(� ) =
� 2

4
�

� 4

2
�

7
480

; (11)

and

Pe =
U

pp
H0

D
:

In order to evaluate� 2 using (8) we are more concerned with the quantity

d� pp
1

dy
= Pe gpp(y=H0); (12)

where

gpp(� ) =
dGpp

d�
: (13)

Substituting this solution into (8) we �nd

� pp
2 = � D

�

1 +
1

210
Pe2

�

: (14)

Using our de�nition of K in (1), we see that

K pp =
1

210
(15)

4 The Average Velocity in High Aspect Ratio Cross Sections

In order to compute the e�ective di�usion coe�cient it is nec essary to compute the average
velocity in the column. Although the average velocity in a high aspect ratio cross section is
nearly equal to the average velocity between two parallel plates, we will see inx 6 that this
small discrepancy can lead to an order one change in the e�ective di�usion coe�cient.

We limit the results of this section to the case where the height away from the ends of the
cross section is constant. Inx7 we extend this to the case where the height in the middle of
the cross section changes by a small and slowly varying amount.
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As in the previous section,U
pp

will denote the average value of the velocity in the parallel
plate approximation. If u is the true average value of the velocity, we can write

u =
1
A

Z



u dA =

1
A

Z



(u � U

pp
) dA + U

pp
: (16)

The velocity pro�le for Poiseuille ow through a rectangular cross section can be written
down in terms of an in�nite series. This solution shows that for a cross section of height
H0 and width W that has a large aspect ratio (H0=W � 1), the velocity approaches the
parallel plate pro�le exponentially fast as we move away from the ends. Signi�cant di�erences
between the parallel plate and true velocity pro�les only exist in a region that is on the order
of H0 near the ends. For a channel where the ends are not perfectly straight, we see similar
behavior, namely an exponentially fast approach to the parallel plate approximation as we
move away from the ends.

Since the velocity is exponentially approaching the parallel plate pro�le, to a very good
approximation, we do not need to compute the integral ofu � U

pp
except near the ends. In

order to compute this integral near the ends we can isolate each end region. To simplify the
explanation we show how to do this for a rectangular cross section, and then note how the
results are easily generalized to cross sections that are not rectangular.

For a rectangular cross section, we can analyze the end region by considering the semi-in�nite
region 
 L de�ned by

(x; y) 2 
 L i� x � � W=2 and j y j� H0=2:

In this end region we consider the problem

� r 2u =
@p
@z

in 
 L ;

u = 0 on @
 L ;

u ! upp(y) = U
pp

f pp(y=H0) as x ! 1 :

In order to compute the average velocity we need to compute the integral

I L =
Z


 L

(u � U
pp

) dA =
Z


 L

v dA +
Z


 L

�
upp(y) � U

pp�
dA; (17)

where
v = u � upp(y): (18)

Since bothu and upp(y) satisfy the Poisson equation with the same constant right hand side,
and u vanishes on the boundary, we have

r 2v = 0; (19a)

v = � upp(y) on @
 L ; (19b)

v ! 0 asx ! 1 : (19c)

If we set
v(x; y) = U

pp
v̂(X; Y )
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where
(X; Y ) = ( x + W=2; y)=H0;

then we have
r 2v̂ = 0; (20a)

v̂ = � f pp(Y ) = 0 for X � 0 and Y = � 1=2; (20b)

v̂ = � f pp(Y) for X = 0 and j Y j< 1=2 ; (20c)

v̂ ! 0 asX ! 1 : (20d)

In terms of these dimensionless variables we can write

I L = � H 2
0U

pp
� L ; (21)

where

� L = �
Z 1=2

� 1=2

Z 1

0
v̂(X; Y ) dX dY = �

Z 1=2

� 1=2

Z 1

0
(f pp(y) � 1) dX dY:

The constant � L is clearly dimensionless.

The computation of � L for a rectangular cross section can be found in several locations
including [13] where it is shown that

� L �
96
� 5

1X

k=0

1
(2k + 1) 5

� :3151

Almost identical arguments would apply if the cross sectionwere not rectangular, but for
example had a semi-circular section attached atx = � W=2. In this case the region 
L would
be a region that properly gives the geometry of the end nearx = � W=2, but ignores the
right end, replacing it with a semi-in�nite region of constant thickness. In the general case
(17), (19), and (21) still hold.

A similar analysis holds when we consider the velocity pro�le on the right side of the cross
section. It follows that our expression for the average velocity can be written as

u = U
pp

�
U

pp
H 2

0

A
(� L + � R ) :

Note that A � H0W, so that to �rst order in � we have

u = U
pp

� � U
pp

(� L + � R) : (22)

5 A Necessary Condition for the Vanishing of � L

In this section we will show that in order to have� L vanish, it is necessary that the left end
bulges out as in �gure 2(a). That is, it is necessary to havej y j> H 0=2 somewhere in the
end section. Identical results apply for� R . A modi�cation of this type to increase the uid
velocity in the end regions was proposed in [10] and was shownto reduce the dispersion. We
extend the results of [10] by proving below that such a modi�cation is, in fact, a necessary
condition.
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Using the expressionupp(y) = U
pp

f pp(y) where f pp(y) is de�ned in (10), we can show that

1
2

� 1
12

j r upp j2 � U
pp

�

+
�
upp � U

pp�
= 0: (23)

Using the fact that r 2upp = � 12, andr 2v = 0, we can write (17) for I L as

I L =
1
12

Z


 L

�
uppr 2v � vr 2upp

�
dA +

Z


 L

�
upp � U

pp�
dA:

Using Green's identity, this gives us

I L =
1
12

Z

@
 L

 

upp @v
@n

� v
@upp

@n

!

dA +
Z


 L

�
upp � U

pp�
dA:

We now use the fact thatu vanishes on the boundary, and hencev = � upp on the boundary.
This allows us to write

I L =
1
12

Z

@
 L

 

upp@upp

@n
� v

@v
@n

!

dA +
Z


 L

�
upp � U

pp�
dA:

Using Green's identity, we can write

Z

@
 L

v
@v
@n

dS =
Z


 L

j r v j2 dA;

Z

@
 L

upp@upp

@n
dS =

Z


 L

�
j r upp j2 + uppr 2upp

�
dA =

Z


 L

�
j r upp j2 � 12upp

�
dA

It follows that we can write

I L = �
1
12

Z


 L

j r v j2 dA +
Z


 L

� 1
12

j r upp j2 � U
pp

�

dA: (24)

If we divide (24) by two, and add the result to (17), and use (23), we get

3
2

I L = �
1
24

Z


 L

j r v j2 dA +
Z


 L

v dA: (25)

We now use the fact thatupp(y) > 0, if j y j< H 0=2. That is, the function giving the parallel
plate velocity is always bigger than zero if we evaluate it between the parallel plates. Our
boundary condition for v in (19) shows that if we always havej y j< H 0=2, then v is always
negative on the boundary. The maximum principle for Laplace's equation now implies that
v is always negative. In this case our expression (25) is clearly negative. This shows that if
the end does not bulge out, thenI L is negative, and hence� L is positive.

6 Channels with Mid-Sections of Constant Height

Here we discuss how to compute the e�ective di�usion coe�cient in the case where the cross
section is constant away from the ends. We discuss the case where we have a small and slowly
varying deviation from a constant cross section in the next section.
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We assume that away from the endsx = � W=2, the cross section has constant heightH0.
Near the ends, we can have quite arbitrary shapes. We will assume that � � H0=W � 1. We
will also utilize the dimensionless rescalings� = x=W and � = y=H0.

In order to use (8) to compute� 2, we need to compute� 1 that satis�es (9), which we write
as

D

 
@2� 1

@x2
+

@2� 1

@y2

!

= u(x; y) � u =
�
u(x; y) � U

pp�
+ U

pp
S(x=W); (26a)

where

S(� ) =
U

pp
� u

U
pp � � (� L + � R) : (26b)

In the equation for � 1 we have split the right hand side up into the termu(x; y) � U
pp

whose
integral across the slicex = constant vanishes (if we are su�ciently away from the ends), and
a source termS(x=W) whose integral across the slice does not vanish. In the caseat hand,
the function S(� ) is a constant, but we have chosen to include the functional dependence on
� since a similar analysis will hold in the next section whereS(� ) will not be a constant.

Away from the endsx = � W=2 of the cross section,u(x; y) will be very close to Poiseuille
ow between parallel plates a distanceH0 apart, Assuming that � is small we expect that
the derivatives with respect tox of � 1 will be much smaller than those with respect toy.
Furthermore, sinceS(� ) is small, we might guess that the leading order term in (26) is given
by

D
@2� 1

@y2
= Upp(y) � U

pp
;

along with the boundary conditions@�1
@y = 0 at y = � H0=2. This has the solution

� 1(x; y) = � pp
1 (y) + F (x); (27a)

where
� pp

1 (y) = Pe H0Gpp(y=H0); (27b)
and Gpp(� ) is de�ned in (11).

Our paradoxical behavior arises from the fact that the function F (x) in (27a) is 1=� larger
than the term � pp

1 . This is related to the general high aspect ratio case [7] where the leading
order term is proportional to 1=�2. The necessity for having a leading order term of 1=� can
be seen when trying to compute the next order correction to this term (see Appendix A).
Intuitively it arises from the fact that if we include the source S(x=W) in (26), then we
cannot solve this equation if we ignore the partial derivatives with respect tox on the left
hand side of this equation. The more rigorous perturbation theory shows that the leading
order term F (x) must be chosen so that the derivatives on the left cancel thesource term
U

pp
S(x=W) on the right. That is,

DF 00= U
pp

S(x=W): (28)

This has the solution

F 0(x) =
U

pp

D

 Z x

� W=2
S(x=W) dx + H0Cint

!

; (29)

which can be written as
F 0(x) = Pe � (x=W); (30a)
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where

� (x=W) =
1
�

 Z x=W

� 1=2
S(� ) d� + �C int

!

: (30b)

At this point the constant Cint is not known, but we now show that

Cint = � � L : (30c)

To do this we de�ne the regions 
(s) to be the part of our cross section that hasx � s. If
we integrate the equation

Dr 2
2� 1 = u(x; y) � u

over the region 
( x), and use the fact that @�1
@n vanishes on the boundary of 
, we get

D
Z

x= const

@�1
@x

dy =
Z


( x)
(u � u) dx dy:

When x is in the interior of the cross section, (27a) shows that the left hand side of this
expression is clearly approachingDH 0F 0(x). It follows that in the interior of the cross section
we have

DH 0F 0(x) �
Z


( x)

�
u � U

pp�
dx dy +

Z


( x)

�
U

pp
� u

�
dx dy: (31)

Sinceu is asymptotically approachingU
pp

as x moves away from the end region, the �rst
integral on the right is well approximated by

Z


( x)

�
u � U

pp�
dx dy � � � L U

pp
H 2

0 : (32)

The second integral can be approximated by
Z


( x)

�
U

pp
� u

�
dx dy � H0U

pp
Z x

� W=2
S(x=W) dx: (33)

Note that in making this approximation we have assumed that the height of the channel is
everywhere given byH0, which is not true in the end region, but ignoring this fact gives us
an error that is on the order of� . Combining (31), (32), and (33) we see that in the interior
we have

F 0(x) � � Pe � L +
Pe
�

Z x=W

� 1=2
S(� ) d�:

If we compare this to equation (30c), we see that we must haveCint = � � L in order to have
these two expressions agree. Now that we know thatCint = � � L , we can compute� (x=W):

� (� ) = ( � L + � R )
�

� +
1
2

�

� � L : (34)

We now argue that when computing the integral (8), there is a small contribution to the
integral coming from the end regions, but the main contribution comes from the interior
region. From (26), we see that the function� 1 in the end region is on the order of� 1 =
O(Pe H0). The square of the gradient in the end region will be on the order of j r � 1 j2=
O(Pe2). The integral of the square of the gradient in the end regionwill be on the order
of Pe2H 2

0 . We will now see that the integral ofj r � 1 j2 in the interior is on the order of
Pe2 H0W, which is 1=� bigger than the integral in the end region.
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Equations (27a) and (30a) show that in the interior we have

j r � 1 j2� Pe2
�
(gpp(y=H0))

2 + ( � (x=W))2
�

:

This term is on the order ofPe2, so when we integrate it over the whole cross section, we
get a term that is on the order ofPe2H0W, which is what we claimed in the last paragraph.
Using this form to compute the integral in (8) we get

� 2 = � D
�
1 + Pe2K

�
;

where

K �
1

210
+ � ; (35a)

� =
Z 1=2

� 1=2
� 2(� ) d� =

� 2
L � � L � R + � 2

R

3
: (35b)

We emphasize that the e�ect of the ends gives an order one contribution to the e�ective
di�usion coe�cient, even in the limit as � ! 0.

7 Slowly Varying Mid-sections

In this section we extend the results of the last section to include cross sections that have
slowly varying mid-sections. The analysis is almost identical to the one in the last section,
requiring only that we use a di�erent function S(� ) for the source term in equation (30c).

We assume that away from the ends, the height of the channel varies like

H (x) = H0 (1 + � (x=W)) ; (36)

where j � j� 1. We also assume that away from the ends� = � 1=2,  (� ) and its derivative
are both order one or less, and that� = H0=W � 1. In other words, we have a nearly
rectangular channel that has a small and slowly varying deviation from a rectangular shape
in the middle of the cross section, and possibly a large deviation near the ends (for example,
semi-circular ends).

In this case, the function� 1 satis�es

D

 
@2� 1

@x2
+

@2� 1

@y2

!

= u(x; y) � u =
�
u(x; y) � U(x)

�
+ U0S(x=W); (37a)

where

S(x=W) =
U(x) � u

U
pp : (37b)

U(x) denotes the average value of the velocity across the slice of the cross section withx
held constant:

U(x) =
Z

x= const
u(x; y) dy: (37c)

In the last sectionU(x) was equal toU
pp

, but in this section it will vary slowly in the channel.
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We need the formula forS(� ) in the middle of the channel. To derive this we use the fact
that the velocity pro�le for ow between parallel plates a distanceh apart is given by

u(y) = �
@p
@z

1
2�

(h2=4 � y2):

Integrating this expression fromy = � h=2 to y = h=2 shows that for a given value of the
pressure gradient, the average velocity is proportional tothe square of the distance between
the plates. In our channel where the thickness varies slowlywith x, the average velocity
across the slice of the channel withx constant will be very nearly

Upp(x) =
H 2(x)

H 2
0

U
pp

= U
pp

(1 + � (x=W))2 :

Here U
pp

is the average velocity in plane Poiseuille ow where the plates are a distance
H0 apart, and the pressure gradient is the pressure gradient that is being imposed on our
system. Assuming that� is small we have

Upp(x) � U
pp

+ 2� U
pp

 (x=W): (38)

In order to compute S(� ) we need to calculate the average velocity in the channel. Inwhat
follows, we will assume that the function (� ) is de�ned so that it properly gives the behavior
in the interior of the channel, but makes no attempt to model the pro�le in the end regions.
For example, if we had a rectangular channel that varies linearly in x in the interior region,
but has semi-circular end regions; we do not attempt to have the function  (� ) capture the
behavior in the end regions. For this reason, we assume that� (� ) is small on the whole
interval j � j� 1=2. Although it does not capture the behavior in the end region, we assume
that it is still de�ned in that region.

We can write
u � U

pp
=

1
A

Z




�
u(x; y) � U

pp�
dx dy =

1
A

(I 1 + I 2) ;

where

I 1 =
Z



(u(x; y) � Upp(x)) dx dy;

I 2 =
Z




�
Upp(x) � U

pp�
dx dy:

The �rst of these integrals can be evaluated just as we did inx4. In particular, we assume
that the integrand goes to zero exponentially fast as we moveaway from the ends. We only
need to compute the integral in the end regions. Doing this weget

I 1 = � H 2
0U

pp
(� L + � R ) ;

where � L and � R would be the same constants we would get when the channel asymptotes
to a channel of constant heightH0. In doing this we are ignoring terms that are on the order
of �H 2

0U
pp

.

The integral I 2 can be computed by noting that away from the end regions we have
Z

x= constant

�
Upp(x) � U

pp�
dy � U

pp
H02� (x=W):
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This expression is not quite right in the end regions, but when computing I 2, the contribution
from the end regions is small, so to a very good approximationwe have

I 2 � U
pp

H0

Z W=2

� W=2
2� (x=W) dx = 2� U

pp
H0W C ;

where

C =
Z 1=2

� 1=2
 (� ) d�: (39)

Note that both I 1 and I 2 are small, so when we divide them byA if we make the approxi-
mation A � H0W, we get an error that is second order in� and � . That is,

1
A

(I 1 + I 2) � � U
pp

� (� L + � R ) + 2 � U
pp

C :

This shows us that
U

pp

U
pp � 1 � � (� l + � R ) + 2 �C  : (40)

Using the de�nition of S(� ) in (37b), (38), and the expression in (40), we get

S(� ) � 2� (� ) + � (� L + � R ) � 2�C  for x away from the ends: (41)

As in the previous section, the solution� 1 in the interior can be written as

� 1(x; y) � U
pp

H0Gpp(y=H0) + F (x);

whereF 0 is given by (29). We can use the same argument as in the last section to show that
Cint = � � L . This implies that we can write

F 0(x) = Pe � (x=W);

where

� (� ) =
�
�
B (� ) + ( � L + � R )

�

� +
1
2

�

� � L ; (42a)

and where

B(� ) = 2
Z �

� 1=2
 (s) ds � 2(� + 1=2)C : (42b)

As in the last section we have
� 2 = � pp

2 � Pe2� ; (43a)
where

� =
Z 1=2

� 1=2
� 2(s) ds; (43b)

and � pp
2 is given in (14). Our expression for� 2 implies that

K = K pp + � (44)

We illustrate this formula with two examples. Suppose that we have a symmetric channel
with a quadratic variation in height. In this case we have (� ) = � 2, and � L = � R = � .
Substituting these expressions into (43b) we get

� = Pe2 630� 2 � 42��=� + � 2=�2

1890
: (45)
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If we set � = 0, we get the result

� = Pe2 � 2

3
:

We can minimize this expression by setting�=� = 21� . If we do this we get

� = Pe2 � 2

10
:

In order to facilitate comparison between our results and those in [12] we give the example
 (� ) = 4 � 2 � 1 that is used in that paper. Assuming that� L = � R = � , we get

� =
� 2

3
�

4��
45�

+
8� 2

945� 2

This agrees with equation 29 in [12]. (We note that� , � , and K = K pp + � here are called,
respectively,� , � , and f=210 in [12]).

As another example, we suppose that we have a linear variation in the height of the cross
section. This gives us

� = Pe2

 
� 2

3
+

� 2

30� 2

!

: (46)

8 Numerical Results

In this section, we �rst numerically con�rm the e�ective di� usion coe�cients for the high
aspect ratio models developed in the previous section. We then explore a modi�cation of the
ends of a channel of rectangular cross section that minimizes the end e�ects discussed inx 6.
Finally, we numerically minimize � 2 for a cross section with asymmetric ends.

8.1 Model Con�rmation

In this section we con�rm via numerical experiment the expressions in (45) and (46). 

H0 

W 

(a) Linear side walls.

 

H0 

W 

(b) Quadratic side walls.

Fig. 1. Cross sections of nearly rectangular columns with height H0 and width W .

We �rst consider a model with linear side walls. Let the height be described in (36), with
 (� ) = � , and � = 0:05. The correction to the e�ective di�usion of the parallel plate case is
given by (46). An example cross section is shown in �gure 1(a). We �x the height H0 = 1 and
numerically compute the velocity pro�le for various valuesof W, �xing the P�eclet number to
bePe = 1. We then determine the eigenvalue� (k) for several values ofk, and do a polynomial
�t of � (k) to determine � 1 and � 2. Theoretical values of � from (46) are compared with
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Aspect Ratio � 2 Numerical � Theoretical � Relative Error

1 1.0084 -0.0295 0.0000 354.7987

10 1.0451 0.0072 0.0083 0.1355

20 1.0695 0.0316 0.0333 0.0507

40 1.1569 0.1191 0.1333 0.1069

80 1.5422 0.5043 0.5333 0.0544

160 3.1154 2.0775 2.1333 0.0262

320 9.6658 8.6280 8.5333 0.0111
Table 1
Numerically determined values of � 2 for various aspect ratios for a cross-section with linear side
walls. The numerical correction value is compared with the theoretical correction value � from
equation (46).

Aspect Ratio � 2 Numerical � Theoretical � Relative Error

1 1.0086 -0.0293 -0.0007 41.1190

10 1.0291 -0.0088 -0.0065 0.3574

20 1.0261 -0.0118 -0.0119 0.0116

40 1.0191 -0.0188 -0.0195 0.0376

80 1.0154 -0.0225 -0.0222 0.0135

160 1.0571 0.0192 0.0234 0.1785

320 1.3428 0.3050 0.3177 0.0401
Table 2
Numerically determined values of � 2 for various aspect ratios for a cross-section with quadratic
side walls. The numerical correction value is compared withthe theoretical correction value � from
equation (45).

numerical values of � in table 1, and the relative error tabulated. Note that the theoretical
results are valid only in the case of a large aspect ratio.

Of interest in this model is that � 2 approaches in�nity with W, whereas a column with a
perfectly rectangular cross section (corresponding to� = 0) has � 2 approaching a value close
to one. This rapid growth in � 2 is con�rmed numerically in table 1.

We next consider a model with quadratic side walls. In this case, (� ) = � 2, and the correction
to the e�ective di�usion of the parallel plate case is given in (45). An example cross section
is shown in �gure 1(b). We have again chosen� = 0:05, and �xed Pe = 1 and H0 = 1.
Following the same procedure as before, we numerically compute the velocity pro�le for
various values ofW. We then determine the eigenvalue� (k) for several values ofk, and then
do a polynomial �t of � (k) to determine � 1 and � 2. Theoretical values of � from (45) are
compared with numerical values of � in table 2, and the relative error tabulated. Again, note
that the theoretical results are valid only in the case of a large aspect ratio.

Of interest in this model is that � 2 again approaches in�nity with W, but does so much
less slowly than for the linear model. This reduced growth in� 2 is con�rmed numerically
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H 0 

W 

r 

(a) Symmetric ends.

 

H 0 

W 

r 

(b) Asymmetric ends.

Fig. 2. Cross sections of nearly rectangular columns with height H0 and width W with with one or
two bulb shaped ends of radiusr .

in table 2. Also note that from (45), there is a sign change in the correction term, meaning
that for a particular aspect ratio, the expected value of� 2 is the same as for a perfectly
rectangular cross section. This change of sign is observed in table 2. As we would expect,
there is an increase in the relative error near this criticalpoint, although the absolute error
remains quite small.

8.2 Minimization of End E�ects

In this section, we consider modifying the ends of a channel of rectangular cross section to
minimize the e�ects discussed inx 6. In particular, we seek an end con�guration such that
� in (35) is essentially zero.

Following a hint given in [6], we consider using a \bulb" on the ends of the channel cross
section, as shown in �gure 2(a). We set the heightH0 = 1 and the width W = 100. For a
circular bulb of radius r = 0:7, we numerically observe that the term � in (35) is 0:00039.
In e�ect, this high aspect ratio channel has the e�ective di�usion coe�cient of two parallel
plates, and the e�ect of the ends has been removed.

8.3 Asymmetric Ends

Here we consider a cross section similar to that in �gure 2(a), but with the right end a bulb
of radius r and the left end rectangular. We set the heightH0 = 1 and the width W = 100.
We seek to minimize� 2 by varying the radius r , which means minimizing � in (35). x 5 tells
us that since the left end of the cross section does not bulge out like the right end, we can
never eliminate the end e�ects (i.e., make � = 0). Numerically determined values of� 2 are
shown in table 3 as a function ofr . We see that the smallest observed value of� 2 occurred
for r = 0:63.
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r � 2

0.61 1.0298

0.62 1.0295

0.63 1.0293

0.64 1.0294

0.65 1.0298

0.66 1.0305
Table 3
Numerically determined values of � 2 for various values of the radius r for a cross section with
asymmetric ends. The minimum value of� 2 observed occurred forr = 0 :63.
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Appendix A

The purpose of this appendix is to give a more rigorous justi�cation of the fact that the
function F (x) must satisfy (28) in the interior region of the cross section. To simplify the
discussion, we consider the case where� = 0; a similar discussion holds for� 6= 0.

To do this we de�ne the dimensionless variables

� = x=W; � = y=H0;  = � 1=H0:

In the interior region, the velocity is very nearly equal to the parallel plate velocityupp(y).
In terms of the dimensionless variables, the equation for� 1 in the interior can be written as

 

� 2 @2 
@�2

+
@2 
@�2

!

= Pe (f pp(� ) � 1) + Pe � (� L + � R);

along with the boundary conditions

@ 
@�

= 0 at � = � 1=2:

We now do a formal perturbation expansion assuming that� is small. In particular we will
assume that

 (�; � ) =
1
�
 � 1(�; � ) +  0(�; � ) + � 1(�; � ) + : : : :

We have chosen to start the expansion with 1=� because, as we will see, this is necessary in
order to satisfy the equations.
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If we collect powers of 1=�, we see that we must have

@2 � 1

@�2
= 0;

@ � 1

@�
= 0 at � = � 1=2:

This implies that we have
 � 1(�; � ) = F (� ):

As we shall see, the fact that � 1 is independent of� is in fact the main result of this
appendix.

If we now carry out the expansion to zeroth order, we �nd that

@2 0

@�2
= Pe (f pp(� ) � 1);

@ 0
@�

= 0 at � = � 1=2:

This implies that
 0(�; � ) = Pe Gpp(� ) + F (� ):

Finally collecting the powers of� , we �nd that

d2F
d� 2

+
@2 1

@�2
= Pe (� L + � R);

@ 1
@�

= 0 at � = � 1=2:

In order to be able to solve for 1 we must satisfy the compatibility condition

Z 1=2

� 1=2

 
d2F
d� 2

� Pe (� L + � R )

!

d� = 0:

This implies that

F (� ) = Pe (� L + � R)
� 2

2
+ A1� + A0:

We could continue in this fashion, to determine the terms to higher and higher order, but
this is su�cient to see that the form we guessed inx6 is in fact correct. In particular, it
is not necessary to know the functionF (� ) in order to compute the limit of the e�ective
di�usion coe�cient as � ! 0.

Appendix B

In this appendix we briey outline how to compare the resultsin [12] to those in this paper.
We �rst explain the proper relationships between their and our notations. What they call f
is related to what we callK by

K =
f

210
:
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We useh(x) for what they call h?(x), g(x) for what they call g?(x), � for what they call
d=W, v(x) for what they call u?, V for what they call U

?
, and � for what they call � . Here

we are assuming that� L = � R = � , as is assumed in their paper. Equation 14 in [12] states

1
h(x)

d
dx

(h(x)g0(x)) = k �
v(x)
V

; (B1a)

g0(� 1=2) = � �k�; (B1b)
Z 1=2

� 1=2
g(x)h(x)dx = �� (g(� 1=2) + g(1=2)) : (B1c)

Readers of [12] may be confused because (B1b) and (B1c) have been incorrectly typeset as
a single equation without a separating semicolon. Here the constant k is given by

k =

R1=2
� 1=2 h(x) dx

2�� +
R1=2

� 1=2 h(x) dx

The expression forf in equation 15 of [12] is

f =

R1=2
� 1=2(v(x)=V)2h3(x) dx

R1=2
� 1=2 h(x) dx

+ 210
1
� 2

R1=2
� 1=2

v(x)
V g(x)h(x) dx

R1=2
� 1=2 h(x) dx

(B2)

We can transform this expression forf into an expression that only depends on the derivative
of g by using (B1a) to convert the second integral to the integralof (v(x)=V � k) h(x)g(x),
plus an additional boundary term. We can then use (B1b) to write this as the integral
of � (h(x)g0)0g(x). After integrating by parts and using the boundary conditions (B1c), we
arrive at

f =

R1=2
� 1=2(v(x)=V)2h3(x) dx

I 1
+ 210

1
� 2

R1=2
� 1=2 h(x)(g0(x))2 dx

I 1
(B3)

If we now let h(x) = 1 + � (x), and assume that� � 1 (what we call � they call � ), we �nd
that to �rst order in � and � , what we call � (x) is related to g(x) by

� (x) = �
g0(x)

�
:

We now see that our expressions (43b) and (44) agree with (B2)in the limit as � and �
approach zero.
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